Non-NMDA receptor-mediated neurotoxicity in cortical culture.
نویسندگان
چکیده
The neurotoxicity of 3 non-NMDA glutamate receptor agonists--kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), and quisqualate--was investigated quantitatively in dissociated murine cortical cultures. Five minute exposure to 500 microM kainate, but not AMPA, produced widespread acute neuronal swelling. Kainate-induced swelling was resistant to 2-amino-5-phosphonovalerate (APV) or replacement of extracellular sodium with choline but attenuated by either kynurenate or low concentrations of quisqualate. Unlike NMDA agonists, kainate or AMPA did not produce much late neuronal loss after a 5 min exposure. In contrast, 5 min exposure to 500 microM quisqualate produced both acute neuronal swelling and widespread late neuronal degeneration. This acute swelling was blocked by APV or by replacement of extracellular sodium by choline, consistent with mediation by NMDA receptors; we speculate that high concentrations of quisqualate may directly activate NMDA receptors or induce the release of endogenous glutamate. Quisqualate-induced late neuronal degeneration may be due to another unexpected process: cellular quisqualate uptake and delayed release, converting brief addition into prolonged exposure. Hours after thorough washout of exogenously added quisqualate, micromolar concentrations could be detected in the bathing medium by high performance liquid chromatography. With lengthy exposure (20-24 hr), all 3 non-NMDA agonists were potent neurotoxins, able to destroy neurons with EC50's of about 20 microM for kainate, 4 microM for AMPA, and 1 microM for quisqualate. Kynurenate and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but not APV or L-glutamate diethyl ester, were effective in attenuating the neuronal degeneration induced by these agonists. CNQX was about 3 times more selective than kynurenate against kainate-induced neuronal injury, but CNQX was still nearly equipotent with APV against NMDA-induced injury. Gamma-D-glutamylaminomethyl sulfonate exhibited partial antagonist specificity for AMPA-induced toxicity.
منابع مشابه
The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملThe effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملIntrinsic redox properties of N-methyl-D-aspartate receptor can determine the developmental expression of excitotoxicity in rat cortical neurons in vitro.
The sensitivity of central neurons in culture to N-methyl-D-aspartate (NMDA) receptor-mediated cell death increases with development. In this study, we show that this phenomenon in vitro may be due, at least in part, to changes in the redox properties of the NMDA receptor itself. With increasing days in culture, NMDA-induced electrical responses in rat cortical neurons are less sensitive to dit...
متن کاملExtracellular acidity potentiates AMPA receptor-mediated cortical neuronal death.
The extracellular acidity that accompanies brain hypoxia-ischemia is known to reduce both NMDA and AMPA-kainate receptor-mediated currents and NMDA receptor-mediated neurotoxicity. Although a protective effect of acidic pH on AMPA-kainate receptor-mediated excitotoxicity has been assumed, such has not been demonstrated. Paradoxically, we found that lowering extracellular pH selectively increase...
متن کاملDifferential susceptibility to neurotoxicity mediated by neurotrophins and neuronal nitric oxide synthase.
NMDA neurotoxicity, which is mediated, in part, by formation of nitric oxide (NO) via activation of neuronal NO synthase (nNOS), is modulated by neurotrophins. nNOS expression in rat and mouse primary neuronal cultures grown on a glial feeder layer is significantly less than that of neurons grown on a polyornithine (Poly-O) matrix. Neurotrophins markedly increase the number of nNOS neurons, nNO...
متن کاملZinc alters excitatory amino acid neurotoxicity on cortical neurons.
Recent studies have suggested that large amounts of free zinc may be coreleased during excitatory synaptic transmission at glutamatergic synapses, and may act postsynaptically to decrease actions mediated by N-methyl-D-aspartate (NMDA) receptors, while often increasing neuroexcitation mediated by quisqualate receptors. The present study examined the ability of zinc to alter excitatory amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 2 شماره
صفحات -
تاریخ انتشار 1990